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Hierarchical	
  Tuning	
  Network	
  

• The	
  base	
  of	
  the	
  hierarchy	
  is	
  composed	
  of	
  Analyzers	
  that	
  
controls	
  disjoint	
  subsets	
  of	
  applica8on	
  tasks	
  

• Abstrac8on	
  mechanism	
  between	
  levels	
  of	
  Analyzers.	
  

• It	
  is	
  composed	
  of	
  analysis	
  and	
  tuning	
  modules	
  (Analyzers)	
  
structured	
  as	
  a	
  hierarchical	
  tree.	
  

Analysis and tuning 
domain 

An analyzer must be able to present itself, to its 
parent Analyzer, as a parallel application task … 

…and abstracts the behaviour of its 
analysis and tuning domain 
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Application task 
Analyzer 

Computer	
  Architecture	
  and	
  Opera8ng	
  Systems	
  Department	
  
Universidad	
  Autónoma	
  de	
  Barcelona	
  

Monitoring	
  

Analysis	
  

Tuning	
  



Application task 
 
 

 
 

Abstractor 
 

Abstrac8on	
  mechanism	
  

Analyzer 
 

Event	
  Manager	
  

Tunlet	
  

Instrumenta8on	
  
Order	
  Sender	
  

Instrumentation 
order translator 

Event 
Creator 

IN
TE

R
N

A
L 

A
P

I 

 
 

 
 
 
 

Events Instrumentation  
orders 

Level	
  i	
  

Level	
  i+1	
  

Performance model 
 

• Monitoring points 
• Performance functions. 
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• How to translate instrumentation orders to 
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• How to create new events which satisfy 
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orders. 
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A1	
  generates:	
  
	
  
•  Mon_Order(computa8on_8me,	
  #work_units)	
  to	
  A1.1	
  
•  Mon_Order(computa8on_8me,	
  #work_units)	
  to	
  A1.2	
  
•  Mon_Order(computa8on_8me,	
  #work_units)	
  to	
  A1.3	
  
•  Mon_Order(computa8on_8me,	
  #work_units)	
  to	
  A1.4	
  

Abstractor	
  associated	
  to	
  A1.1	
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•  Mon_Order(computa8on_8me,	
  #work_units)	
  to	
  T1	
  
•  Mon_Order(computa8on_8me,	
  #work_units)	
  to	
  T2	
  
•  Mon_Order(computa8on_8me,	
  #work_units)	
  to	
  T5	
  
•  Mon_Order(computa8on_8me,	
  #work_units)	
  to	
  T6.	
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A1.1	
  receives:	
  
	
  
•  Event(computa8on_8me,	
  #work_units)	
  from	
  T1	
  
•  Event(computa8on_8me,	
  #work_units)	
  from	
  T2	
  
•  Event(computa8on_8me,	
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Table I: Description of variables which represent the performance and abstraction models.

Variable description
N the number of nodes in the analysis and tuning domain for each analysis module
Ea the number of events received from each node of the analysis and tuning domain before performing analysis to detect performance

problems
Ec the number of events received from each node of the analysis and tuning domain before creating a new event which will be sent

to the level above in the hierarchy
Ta(N) the time required to perform analysis to detect performance problems. This time can be constant or dependent of N
Tm the time required to transfer each event received by the analysis module to the correct module, where it is stored
Tc the time required to create a new event which will be sent to the level above in the hierarchy
Tt the time required to transform an instrumentation order which will be sent to the level below in the hierarchy
frp the tuning order reception frequency from the parent analysis module
frc the event reception frequency from each child node of the analysis and tuning domain
fe the events generation frequency of the parallel application

order for moving load from the application tasks T5 and T9,
because these tasks are the only ones that share a common
border with the analysis and tuning domain of A1.3.

III. DETERMINING THE ARCHITECTURE TOPOLOGY

Given a parallel application, the proposed analysis ar-
chitecture may have several topologies, depending on the
number of analysis modules used to build it.

In this work, we propose the creation of architectures
that use the fewest possible resources, so a topology with
the minimum number of analysis modules must be found.
However, these analysis modules cannot become saturated.
An analysis module is saturated if it cannot process and act
upon the information that it receives from the application at
the frequency with which it is sent.

The maximum domain size for a non-saturated analysis
module is determined by the work required during an analy-
sis and tuning process - detecting performance problems and
making decisions to improve the performance of the parallel
application. Considering the variables presented in Table I,
we can define the total time that an analysis module requires
to carry out an analysis and tuning process as:

N · Ea · Tm + Ta(N) +
Ea

Ec
· Tc + Tt · frp (1)

This work can be divided into several actions:
1) Gathering behavioural information about the nodes

that make up the analysis and tuning domain of the
analysis module. The time required to gather an event
and transfer it to either the Tunlet or the Event Creator
is Tm. This action is repeated for each event received
before detecting performance problems, i.e N · Ea.

2) Detecting performance problems and making the nec-
essary decisions which will improve the performance
of the application. According to the characteristics of
the performance model, the time taken by an analysis
module to detect performance problems, Ta(N), can
be constant or dependent on the number of nodes
that compose the analysis and tuning domain of the
analysis module.

3) Creating a new event using the behavioural informa-
tion previously gathered, taking a time equal to Tc.

The number of occurrences of this action in an analysis
and tuning process is determined by Ea/Ec.

4) Translating an instrumentation order received from the
parent Analyzer, taking a time equal to Tt. How often
this action is performed depends on the frequency
with which tuning orders are received from the parent
Analyzer, frp.

The frequency at which an analysis and tuning process
takes place in an analysis module is fa = frc/Ea. This value
ultimately depends on the frequency with which events are
generated in the parallel application task, fe.

In order to avoid saturation, the maximum time that an
analysis module can dedicate to carry out an analysis and
tuning process is 1/fa, the analysis period. This constraint
is defined by the following expression:

N · Ea · Tm + Ta(N) +
Ea

Ec
· Tc + Tt · frp ≤ 1

fa
(2)

If the time spent performing the work of an analysis and
tuning process is equal to 1/fa, the analysis module does not
have free time between two analysis and tuning processes. In
other words, it is occupied 100% of the time making efficient

Algorithm 1 Calculating the topology of the hierarchical
architecture
Input: #Tasks // Number of tasks of the parallel application.
Input: E

i
a, E

i
c, T

i
a(N), T i

m, T
i
c , T

i
t , f

i
rp, f

i
rc // Analysis and tuning

process variables for each level i
Output: Topology[]

i = 0 // i indicates the level of the hierarchy. i = 0 means the
base of the hierarchy.
Current level tasks = #Tasks // The base level tasks are
all the tasks of the parallel application.
repeat

N =
1
fi
a
−Ei

a
Ei

c
·T i

c−T i
a(N)−T i

t ·f
i
rp

Ei
a·T i

m

#Analysis modules = (int)Current level tasks
N

Topology[i] = #Analysis modules

Current level tasks = #Analysis modules

i++

until #Analysis modules > 1
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tree	
  
•  Prototype	
  implementa8on	
  of	
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  proposed	
  tuning	
  network	
  

MRNet	
  Framework	
  

• A	
  network	
  of	
  hierarchically	
  
organised	
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• Poten8al:	
  Filters.	
  

Func8onality	
  
Abstractor-­‐Analyzer	
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  Filter	
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The	
  prototype	
  simulates	
  all	
   the	
  ac8ons	
  which	
  would	
  take	
  place	
  during	
  the	
  performance	
  analysis	
  and	
  
tuning	
  process	
  of	
  a	
  parallel	
  applica8on:	
  

-­‐  BEs	
  simulate	
  an	
  instrumented	
  SPMD	
  applica8on.	
  
-­‐  Filters	
  simulate	
  the	
  Abstractor-­‐Analyzer	
  func8onality.	
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•  Execu8on	
  Environments:	
  

–  Marenostrum	
  at	
  Barcelona	
  Supercompu8ng	
  Centre	
  	
  	
  
–  SuperMUC	
  at	
  Leibniz	
  Supercompu8ng	
  Centre	
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Figure 6: Time required to make a decision. The time is measured for each level in the hierarchy.

by Myrinet Network. Each node, running SuSe Linux,
has 2 dual-core 2.3 GHz PowerPC 970MP processors. On
SuperMUC we used an island composed of 512 nodes
interconnected by Infiniband FDR10. Each node, running
SuSe Linux, has 2 8-core 2.7GHz Intel Xeon processors.

Suppose a performance and abstraction model simulated
by the prototype with the following parameters:

• fe of 10 events per second per simulated task.
• Ea of 10, a performance problem detection phase is

performed every 10 batches of events.
• Ec of 1, a single new event is sent to the parent level

every batch of events, as such frc = fe at all levels.
• Linear Ta(N) of 30ms, i.e. the performance problems

detection phase lasts 30ms per node within the analysis
and tuning domain of the analysis module.

• Tm of 1ms.
• Tc and Tt of 0.1ms.
• frp of fe/(10 · Ea), a tuning action is received every

10 seconds
Keeping these values the same, analysis architectures

have been created for parallel applications composed of
different numbers of tasks following the algorithm given in
Section III. The same parameter values are used for all levels
within each of the hierarchies. The details of each of these
architectures are given in Table II.

Figure 6 presents the average time required to make
decisions at each level for each of the experiments on
each platform. This is defined as the time between the
generation of the final event required to make a decision
for performance improvement and the moment when that
decision is made at the end of an analysis and tuning process.
The decision time at level i includes the time required for
an analysis and tuning process at each descendant level.

Figure 6(a) shows that the time to make a decision at
level 0 rapidly reaches a ceiling, when the analysis modules
are controlling the maximum number of tasks. This situation
occurs because as the parallel application grows, additional
analysis modules are simply added. The decision time at
level 1 increases proportionally to the size of the analysis
and tuning domain at this level in the hierarchy. When
the application reaches 800 tasks, a new level is required.
However, in this last experiment since the two analysis

Table II: Architecture topologies for parallel applications
composed of different number of tasks.

# Tasks of Level 0 Level 1 Level 2
the parallel #Analysis Domain #Analysis Domain #Analysis Domain
application modules size modules size modules size

Architectures executed in MareNostrum and SuperMUC
25 2 13 1 2 - -
50 3 16 1 3 - -

100 5 20 1 5 - -
200 10 20 1 10 - -
400 19 22 1 19 - -
800 37 22 2 19 1 2

Architectures executed in SuperMUC
1600 73 22 4 20 1 4
3200 146 22 7 21 1 7
6400 292 22 14 21 1 14

modules at level 1 are working in parallel, the global
decision time is only slightly larger than for 400 application
tasks. This small increase from 400 to 800 tasks highlights
the key benefit of the hierarchical architecture.

Figure 6(b) shows the results obtained for experiments
executed on SuperMUC. Specifically, time for larger scale
experiments are shown due to the availability of more nodes
in this platform. The experiments run on SuperMUC for 25
to 800 tasks presented the same behaviour as on MareNos-
trum, in fact the decision times at each level are within 0.8%
of one another. For reasons of scale, the experiments for less
than 400 tasks have been omitted. It is demonstrated that the
pattern of the previously commented results continues as the
application grows. Given that all the analysis modules work
in parallel, except for the root, the overall increase in global
decision time grows only sub-polynomially as the number
of application tasks increases and new levels are filled up or
added to the hierarchy.

The parameters that define the performance and abstrac-
tion model will change the values of the results observed,
however the underlying pattern of scalability remains. This
pattern depends upon the properties of the proposed analysis
architecture and not on the specific characteristics of the
application and the performance and abstraction models’
parameters.

To demonstrate the efficiency of the hierarchical analysis
architectures used in the scalability experiments, we will
show that they are composed of the minimum number of
the analysis modules necessary for efficiently analysing and
tuning the application.
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Figure 7: Analysis lag of the level 0 and 1 analysis modules in milliseconds.

Table III: Architecture topologies for the three experiments
conducted.

Level 0 Level 1
Experiment #Analysis Domain #Analysis Domain

modules size modules size
1 19 21 1 19
2 20 20 1 20
3 18 22 1 18

In order to achieve this goal, we must compare the
analysis topology built using expression 2 with topolo-
gies composed of a fewer and greater number of analysis
modules. For this purpose, we have chosen the topology
calculated for 400 parallel application tasks. The topology
for these 3 experiments are given in Table III and the results
are shown in Figure 7.

To determine whether or not the analysis module is satu-
rated we define a measurement called analysis lag, which is
the time between the generation of the final event required
for an analysis and tuning process and the start of that
process, as shown in Figure 8. A saturated analysis module
presents an analysis lag which steadily increases during the
experiment’s execution. This is because the analysis module
has an increasing backlog due to being unable to complete
an analysis and tuning process within the analysis period.
A stable analysis lag, one that does not change significantly
over time, indicates a non-saturated analysis module.

Figure 7(a) shows the analysis lag over time for the
analysis modules located at level 0 in the hierarchy for the
three compared topologies.

These results show the expected behavior, wherein the
analysis lag from Experiment 3 reflects its saturation (due
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Figure 8: Analysis lag.

to having fewer level 0 analysis modules than necessary),
Experiments 1 and 2, are not saturated as demonstrated by
the stability of their analysis lag.

The analysis lag for the level 1 analysis modules is pre-
sented in Figure 7(b). In this case, all three experiments show
analysis modules with stable analysis lag and managing a
number of children far below their maximum domain size. It
can be seen that when an analysis module is not saturated,
the analysis lag is directly proportional to the number of
nodes within the analysis and tuning domain. It should be
noted that in Experiment 3, descendant saturated analysis
modules do not affect the analysis lag metric at the level
1. However, the quality of the performance analysis and
tuning process carried out by the level 1 analysis module
in Experiment 3 will be greatly degraded by the saturation
of the descendant analysis modules.

The counterpoint to the saturation of the analysis module
is resource usage, so while Experiment 2 presents a slightly
smaller analysis lag at level 0, its use of additional resources
makes it less efficient. As such, the predicted architecture is
in fact the best candidate. It makes efficient use of resources,
employing the minimum number of non-saturated analysis
modules.

VI. RELATED WORK

Currently, there are several analysis tools that are able
to work on large scale systems, managing the scalability
problems. Well known examples are Paradyn [11], Scalasca
[4], TAU Performance System [12], and Periscope [3]. All
of them implement some sort of decentralised mechanism,
most of them hierarchical, and in some cases using MRNet.
However, none of them, except for latest efforts in Periscope,
consider application tuning.

There are also other tools which perform dynamic tuning
of parallel applications. Autopilot [13] supports dynamic
performance tuning in heterogeneous environments.The Au-
topilot monitoring process is based on dynamic integration
of sensors, which extract information about the application.
The information analysis and decision procedures are per-
formed using fuzzy logic. Finally, the application tuning is
done by dynamically inserting actuator processes.

400	
  tasks	
  

+	
  
-­‐	
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Table III: Architecture topologies for the three experiments
conducted.

Level 0 Level 1
Experiment #Analysis Domain #Analysis Domain

modules size modules size
1 19 21 1 19
2 20 20 1 20
3 18 22 1 18

In order to achieve this goal, we must compare the
analysis topology built using expression 2 with topolo-
gies composed of a fewer and greater number of analysis
modules. For this purpose, we have chosen the topology
calculated for 400 parallel application tasks. The topology
for these 3 experiments are given in Table III and the results
are shown in Figure 7.

To determine whether or not the analysis module is satu-
rated we define a measurement called analysis lag, which is
the time between the generation of the final event required
for an analysis and tuning process and the start of that
process, as shown in Figure 8. A saturated analysis module
presents an analysis lag which steadily increases during the
experiment’s execution. This is because the analysis module
has an increasing backlog due to being unable to complete
an analysis and tuning process within the analysis period.
A stable analysis lag, one that does not change significantly
over time, indicates a non-saturated analysis module.

Figure 7(a) shows the analysis lag over time for the
analysis modules located at level 0 in the hierarchy for the
three compared topologies.

These results show the expected behavior, wherein the
analysis lag from Experiment 3 reflects its saturation (due

!
"#$

%!&'
(!)*

+(%
(,$

-$%
!

.%(
/0121

.%(/0121&/(,

Figure 8: Analysis lag.

to having fewer level 0 analysis modules than necessary),
Experiments 1 and 2, are not saturated as demonstrated by
the stability of their analysis lag.

The analysis lag for the level 1 analysis modules is pre-
sented in Figure 7(b). In this case, all three experiments show
analysis modules with stable analysis lag and managing a
number of children far below their maximum domain size. It
can be seen that when an analysis module is not saturated,
the analysis lag is directly proportional to the number of
nodes within the analysis and tuning domain. It should be
noted that in Experiment 3, descendant saturated analysis
modules do not affect the analysis lag metric at the level
1. However, the quality of the performance analysis and
tuning process carried out by the level 1 analysis module
in Experiment 3 will be greatly degraded by the saturation
of the descendant analysis modules.

The counterpoint to the saturation of the analysis module
is resource usage, so while Experiment 2 presents a slightly
smaller analysis lag at level 0, its use of additional resources
makes it less efficient. As such, the predicted architecture is
in fact the best candidate. It makes efficient use of resources,
employing the minimum number of non-saturated analysis
modules.

VI. RELATED WORK

Currently, there are several analysis tools that are able
to work on large scale systems, managing the scalability
problems. Well known examples are Paradyn [11], Scalasca
[4], TAU Performance System [12], and Periscope [3]. All
of them implement some sort of decentralised mechanism,
most of them hierarchical, and in some cases using MRNet.
However, none of them, except for latest efforts in Periscope,
consider application tuning.

There are also other tools which perform dynamic tuning
of parallel applications. Autopilot [13] supports dynamic
performance tuning in heterogeneous environments.The Au-
topilot monitoring process is based on dynamic integration
of sensors, which extract information about the application.
The information analysis and decision procedures are per-
formed using fuzzy logic. Finally, the application tuning is
done by dynamically inserting actuator processes.
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Table III: Architecture topologies for the three experiments
conducted.

Level 0 Level 1
Experiment #Analysis Domain #Analysis Domain

modules size modules size
1 19 21 1 19
2 20 20 1 20
3 18 22 1 18

In order to achieve this goal, we must compare the
analysis topology built using expression 2 with topolo-
gies composed of a fewer and greater number of analysis
modules. For this purpose, we have chosen the topology
calculated for 400 parallel application tasks. The topology
for these 3 experiments are given in Table III and the results
are shown in Figure 7.

To determine whether or not the analysis module is satu-
rated we define a measurement called analysis lag, which is
the time between the generation of the final event required
for an analysis and tuning process and the start of that
process, as shown in Figure 8. A saturated analysis module
presents an analysis lag which steadily increases during the
experiment’s execution. This is because the analysis module
has an increasing backlog due to being unable to complete
an analysis and tuning process within the analysis period.
A stable analysis lag, one that does not change significantly
over time, indicates a non-saturated analysis module.

Figure 7(a) shows the analysis lag over time for the
analysis modules located at level 0 in the hierarchy for the
three compared topologies.

These results show the expected behavior, wherein the
analysis lag from Experiment 3 reflects its saturation (due
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to having fewer level 0 analysis modules than necessary),
Experiments 1 and 2, are not saturated as demonstrated by
the stability of their analysis lag.

The analysis lag for the level 1 analysis modules is pre-
sented in Figure 7(b). In this case, all three experiments show
analysis modules with stable analysis lag and managing a
number of children far below their maximum domain size. It
can be seen that when an analysis module is not saturated,
the analysis lag is directly proportional to the number of
nodes within the analysis and tuning domain. It should be
noted that in Experiment 3, descendant saturated analysis
modules do not affect the analysis lag metric at the level
1. However, the quality of the performance analysis and
tuning process carried out by the level 1 analysis module
in Experiment 3 will be greatly degraded by the saturation
of the descendant analysis modules.

The counterpoint to the saturation of the analysis module
is resource usage, so while Experiment 2 presents a slightly
smaller analysis lag at level 0, its use of additional resources
makes it less efficient. As such, the predicted architecture is
in fact the best candidate. It makes efficient use of resources,
employing the minimum number of non-saturated analysis
modules.

VI. RELATED WORK

Currently, there are several analysis tools that are able
to work on large scale systems, managing the scalability
problems. Well known examples are Paradyn [11], Scalasca
[4], TAU Performance System [12], and Periscope [3]. All
of them implement some sort of decentralised mechanism,
most of them hierarchical, and in some cases using MRNet.
However, none of them, except for latest efforts in Periscope,
consider application tuning.

There are also other tools which perform dynamic tuning
of parallel applications. Autopilot [13] supports dynamic
performance tuning in heterogeneous environments.The Au-
topilot monitoring process is based on dynamic integration
of sensors, which extract information about the application.
The information analysis and decision procedures are per-
formed using fuzzy logic. Finally, the application tuning is
done by dynamically inserting actuator processes.
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Table III: Architecture topologies for the three experiments
conducted.

Level 0 Level 1
Experiment #Analysis Domain #Analysis Domain

modules size modules size
1 19 21 1 19
2 20 20 1 20
3 18 22 1 18

In order to achieve this goal, we must compare the
analysis topology built using expression 2 with topolo-
gies composed of a fewer and greater number of analysis
modules. For this purpose, we have chosen the topology
calculated for 400 parallel application tasks. The topology
for these 3 experiments are given in Table III and the results
are shown in Figure 7.

To determine whether or not the analysis module is satu-
rated we define a measurement called analysis lag, which is
the time between the generation of the final event required
for an analysis and tuning process and the start of that
process, as shown in Figure 8. A saturated analysis module
presents an analysis lag which steadily increases during the
experiment’s execution. This is because the analysis module
has an increasing backlog due to being unable to complete
an analysis and tuning process within the analysis period.
A stable analysis lag, one that does not change significantly
over time, indicates a non-saturated analysis module.

Figure 7(a) shows the analysis lag over time for the
analysis modules located at level 0 in the hierarchy for the
three compared topologies.

These results show the expected behavior, wherein the
analysis lag from Experiment 3 reflects its saturation (due
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to having fewer level 0 analysis modules than necessary),
Experiments 1 and 2, are not saturated as demonstrated by
the stability of their analysis lag.

The analysis lag for the level 1 analysis modules is pre-
sented in Figure 7(b). In this case, all three experiments show
analysis modules with stable analysis lag and managing a
number of children far below their maximum domain size. It
can be seen that when an analysis module is not saturated,
the analysis lag is directly proportional to the number of
nodes within the analysis and tuning domain. It should be
noted that in Experiment 3, descendant saturated analysis
modules do not affect the analysis lag metric at the level
1. However, the quality of the performance analysis and
tuning process carried out by the level 1 analysis module
in Experiment 3 will be greatly degraded by the saturation
of the descendant analysis modules.

The counterpoint to the saturation of the analysis module
is resource usage, so while Experiment 2 presents a slightly
smaller analysis lag at level 0, its use of additional resources
makes it less efficient. As such, the predicted architecture is
in fact the best candidate. It makes efficient use of resources,
employing the minimum number of non-saturated analysis
modules.

VI. RELATED WORK

Currently, there are several analysis tools that are able
to work on large scale systems, managing the scalability
problems. Well known examples are Paradyn [11], Scalasca
[4], TAU Performance System [12], and Periscope [3]. All
of them implement some sort of decentralised mechanism,
most of them hierarchical, and in some cases using MRNet.
However, none of them, except for latest efforts in Periscope,
consider application tuning.

There are also other tools which perform dynamic tuning
of parallel applications. Autopilot [13] supports dynamic
performance tuning in heterogeneous environments.The Au-
topilot monitoring process is based on dynamic integration
of sensors, which extract information about the application.
The information analysis and decision procedures are per-
formed using fuzzy logic. Finally, the application tuning is
done by dynamically inserting actuator processes.
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Table III: Architecture topologies for the three experiments
conducted.

Level 0 Level 1
Experiment #Analysis Domain #Analysis Domain

modules size modules size
1 19 21 1 19
2 20 20 1 20
3 18 22 1 18

In order to achieve this goal, we must compare the
analysis topology built using expression 2 with topolo-
gies composed of a fewer and greater number of analysis
modules. For this purpose, we have chosen the topology
calculated for 400 parallel application tasks. The topology
for these 3 experiments are given in Table III and the results
are shown in Figure 7.

To determine whether or not the analysis module is satu-
rated we define a measurement called analysis lag, which is
the time between the generation of the final event required
for an analysis and tuning process and the start of that
process, as shown in Figure 8. A saturated analysis module
presents an analysis lag which steadily increases during the
experiment’s execution. This is because the analysis module
has an increasing backlog due to being unable to complete
an analysis and tuning process within the analysis period.
A stable analysis lag, one that does not change significantly
over time, indicates a non-saturated analysis module.

Figure 7(a) shows the analysis lag over time for the
analysis modules located at level 0 in the hierarchy for the
three compared topologies.

These results show the expected behavior, wherein the
analysis lag from Experiment 3 reflects its saturation (due
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to having fewer level 0 analysis modules than necessary),
Experiments 1 and 2, are not saturated as demonstrated by
the stability of their analysis lag.

The analysis lag for the level 1 analysis modules is pre-
sented in Figure 7(b). In this case, all three experiments show
analysis modules with stable analysis lag and managing a
number of children far below their maximum domain size. It
can be seen that when an analysis module is not saturated,
the analysis lag is directly proportional to the number of
nodes within the analysis and tuning domain. It should be
noted that in Experiment 3, descendant saturated analysis
modules do not affect the analysis lag metric at the level
1. However, the quality of the performance analysis and
tuning process carried out by the level 1 analysis module
in Experiment 3 will be greatly degraded by the saturation
of the descendant analysis modules.

The counterpoint to the saturation of the analysis module
is resource usage, so while Experiment 2 presents a slightly
smaller analysis lag at level 0, its use of additional resources
makes it less efficient. As such, the predicted architecture is
in fact the best candidate. It makes efficient use of resources,
employing the minimum number of non-saturated analysis
modules.

VI. RELATED WORK

Currently, there are several analysis tools that are able
to work on large scale systems, managing the scalability
problems. Well known examples are Paradyn [11], Scalasca
[4], TAU Performance System [12], and Periscope [3]. All
of them implement some sort of decentralised mechanism,
most of them hierarchical, and in some cases using MRNet.
However, none of them, except for latest efforts in Periscope,
consider application tuning.

There are also other tools which perform dynamic tuning
of parallel applications. Autopilot [13] supports dynamic
performance tuning in heterogeneous environments.The Au-
topilot monitoring process is based on dynamic integration
of sensors, which extract information about the application.
The information analysis and decision procedures are per-
formed using fuzzy logic. Finally, the application tuning is
done by dynamically inserting actuator processes.
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Table III: Architecture topologies for the three experiments
conducted.

Level 0 Level 1
Experiment #Analysis Domain #Analysis Domain

modules size modules size
1 19 21 1 19
2 20 20 1 20
3 18 22 1 18

In order to achieve this goal, we must compare the
analysis topology built using expression 2 with topolo-
gies composed of a fewer and greater number of analysis
modules. For this purpose, we have chosen the topology
calculated for 400 parallel application tasks. The topology
for these 3 experiments are given in Table III and the results
are shown in Figure 7.

To determine whether or not the analysis module is satu-
rated we define a measurement called analysis lag, which is
the time between the generation of the final event required
for an analysis and tuning process and the start of that
process, as shown in Figure 8. A saturated analysis module
presents an analysis lag which steadily increases during the
experiment’s execution. This is because the analysis module
has an increasing backlog due to being unable to complete
an analysis and tuning process within the analysis period. On
the other hand, a stable analysis lag, one that does not change
significantly over time, indicates a non-saturated analysis
module.

Figure 7(a) shows the analysis lag over time for the
analysis modules located at level 0 in the hierarchy for the
three compared topologies.

These results show the expected behavior, wherein the
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analysis lag from Experiment 3 reflects its saturation (due
to having fewer level 0 analysis modules than necessary),
Experiments 1 and 2, are not saturated as demonstrated by
the stability of their analysis lag.

The analysis lag for the level 1 analysis modules is pre-
sented in Figure 7(b). In this case, all three experiments show
analysis modules with stable analysis lag and managing a
number of children far below their maximum domain size. It
can be seen that when an analysis module is not saturated,
the analysis lag is directly proportional to the number of
nodes within the analysis and tuning domain. It should be
noted that in Experiment 3, descendant saturated analysis
modules do not affect the analysis lag metric at the level
1. However, the quality of the performance analysis and
tuning process carried out by the level 1 analysis module
in Experiment 3 will be greatly degraded by the saturation
of the descendant analysis modules.

The counterpoint to the saturation of the analysis module
is resource usage, so while Experiment 2 presents a slightly
smaller analysis lag at level 0, its use of additional resources
makes it less efficient. As such, the predicted architecture is
in fact the best candidate. It makes efficient use of resources,
employing the minimum number of non-saturated analysis
modules.

VI. RELATED WORK

Currently, there are several analysis tools that are able
to work on large scale systems, managing the scalability
problems. Well known examples are Paradyn [11], Scalasca
[4], TAU Performance System [12], and Periscope [3]. All
of them implement some sort of decentralised mechanism,
most of them hierarchical, and in some cases using MRNet.
However, none of them, except for latest efforts in Periscope,
consider application tuning.

There are also other tools which perform dynamic tuning
of parallel applications. Autopilot [13] supports dynamic
performance tuning in heterogeneous environments.The Au-
topilot monitoring process is based on dynamic integration
of sensors, which extract information about the application.
The information analysis and decision procedures are per-
formed using fuzzy logic. Finally, the application tuning is
done by dynamically inserting actuator processes.
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Table I: Description of variables which represent the performance and abstraction models.

Variable description
N the number of nodes in the analysis and tuning domain for each analysis module
Ea the number of events received from each node of the analysis and tuning domain before performing analysis to detect performance

problems
Ec the number of events received from each node of the analysis and tuning domain before creating a new event which will be sent

to the level above in the hierarchy
Ta(N) the time required to perform analysis to detect performance problems. This time can be constant or dependent of N
Tm the time required to transfer each event received by the analysis module to the correct module, where it is stored
Tc the time required to create a new event which will be sent to the level above in the hierarchy
Tt the time required to transform an instrumentation order which will be sent to the level below in the hierarchy
frp the tuning order reception frequency from the parent analysis module
frc the event reception frequency from each child node of the analysis and tuning domain
fe the events generation frequency of the parallel application

order for moving load from the application tasks T5 and T9,
because these tasks are the only ones that share a common
border with the analysis and tuning domain of A1.3.

III. DETERMINING THE ARCHITECTURE TOPOLOGY

Given a parallel application, the proposed analysis ar-
chitecture may have several topologies, depending on the
number of analysis modules used to build it.

In this work, we propose the creation of architectures
that use the fewest possible resources, so a topology with
the minimum number of analysis modules must be found.
However, these analysis modules cannot become saturated.
An analysis module is saturated if it cannot process and act
upon the information that it receives from the application at
the frequency with which it is sent.

The maximum domain size for a non-saturated analysis
module is determined by the work required during an analy-
sis and tuning process - detecting performance problems and
making decisions to improve the performance of the parallel
application. Considering the variables presented in Table I,
we can define the total time that an analysis module requires
to carry out an analysis and tuning process as:

N · Ea · Tm + Ta(N) +
Ea

Ec
· Tc + Tt · frp (1)

This work can be divided into several actions:
1) Gathering behavioural information about the nodes

that make up the analysis and tuning domain of the
analysis module. The time required to gather an event
and transfer it to either the Tunlet or the Event Creator
is Tm. This action is repeated for each event received
before detecting performance problems, i.e N · Ea.

2) Detecting performance problems and making the nec-
essary decisions which will improve the performance
of the application. According to the characteristics of
the performance model, the time taken by an analysis
module to detect performance problems, Ta(N), can
be constant or dependent on the number of nodes
that compose the analysis and tuning domain of the
analysis module.

3) Creating a new event using the behavioural informa-
tion previously gathered, taking a time equal to Tc.

The number of occurrences of this action in an analysis
and tuning process is determined by Ea/Ec.

4) Translating an instrumentation order received from the
parent Analyzer, taking a time equal to Tt. How often
this action is performed depends on the frequency
with which tuning orders are received from the parent
Analyzer, frp.

The frequency at which an analysis and tuning process
takes place in an analysis module is fa = frc/Ea. This value
ultimately depends on the frequency with which events are
generated in the parallel application task, fe.

In order to avoid saturation, the maximum time that an
analysis module can dedicate to carry out an analysis and
tuning process is 1/fa, the analysis period. This constraint
is defined by the following expression:

N · Ea · Tm + Ta(N) +
Ea

Ec
· Tc + Tt · frp ≤ 1

fa
(2)

If the time spent performing the work of an analysis and
tuning process is equal to 1/fa, the analysis module does not
have free time between two analysis and tuning processes. In
other words, it is occupied 100% of the time making efficient

Algorithm 1 Calculating the topology of the hierarchical
architecture
Input: #Tasks // Number of tasks of the parallel application.
Input: E

i
a, E

i
c, T

i
a(N), T i

m, T
i
c , T

i
t , f

i
rp, f

i
rc // Analysis and tuning

process variables for each level i
Output: Topology[]

i = 0 // i indicates the level of the hierarchy. i = 0 means the
base of the hierarchy.
Current level tasks = #Tasks // The base level tasks are
all the tasks of the parallel application.
repeat

N =
1
fi
a
−Ei

a
Ei

c
·T i

c−T i
a(N)−T i

t ·f
i
rp

Ei
a·T i

m

#Analysis modules = (int)Current level tasks
N

Topology[i] = #Analysis modules

Current level tasks = #Analysis modules

i++

until #Analysis modules > 1
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